File: //usr/lib/mysqlsh/lib/python3.8/site-packages/oci/ai_document/models/model_metrics.py
# coding: utf-8
# Copyright (c) 2016, 2025, Oracle and/or its affiliates. All rights reserved.
# This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license.
# NOTE: This class is auto generated by OracleSDKGenerator. DO NOT EDIT. API Version: 20221109
from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401
from oci.decorators import init_model_state_from_kwargs
@init_model_state_from_kwargs
class ModelMetrics(object):
"""
Trained Model Metrics.
"""
#: A constant which can be used with the model_type property of a ModelMetrics.
#: This constant has a value of "KEY_VALUE_EXTRACTION"
MODEL_TYPE_KEY_VALUE_EXTRACTION = "KEY_VALUE_EXTRACTION"
#: A constant which can be used with the model_type property of a ModelMetrics.
#: This constant has a value of "DOCUMENT_CLASSIFICATION"
MODEL_TYPE_DOCUMENT_CLASSIFICATION = "DOCUMENT_CLASSIFICATION"
def __init__(self, **kwargs):
"""
Initializes a new ModelMetrics object with values from keyword arguments. This class has the following subclasses and if you are using this class as input
to a service operations then you should favor using a subclass over the base class:
* :class:`~oci.ai_document.models.DocumentClassificationModelMetrics`
* :class:`~oci.ai_document.models.KeyValueDetectionModelMetrics`
The following keyword arguments are supported (corresponding to the getters/setters of this class):
:param model_type:
The value to assign to the model_type property of this ModelMetrics.
Allowed values for this property are: "KEY_VALUE_EXTRACTION", "DOCUMENT_CLASSIFICATION", 'UNKNOWN_ENUM_VALUE'.
Any unrecognized values returned by a service will be mapped to 'UNKNOWN_ENUM_VALUE'.
:type model_type: str
:param dataset_summary:
The value to assign to the dataset_summary property of this ModelMetrics.
:type dataset_summary: oci.ai_document.models.DatasetSummary
"""
self.swagger_types = {
'model_type': 'str',
'dataset_summary': 'DatasetSummary'
}
self.attribute_map = {
'model_type': 'modelType',
'dataset_summary': 'datasetSummary'
}
self._model_type = None
self._dataset_summary = None
@staticmethod
def get_subtype(object_dictionary):
"""
Given the hash representation of a subtype of this class,
use the info in the hash to return the class of the subtype.
"""
type = object_dictionary['modelType']
if type == 'DOCUMENT_CLASSIFICATION':
return 'DocumentClassificationModelMetrics'
if type == 'KEY_VALUE_EXTRACTION':
return 'KeyValueDetectionModelMetrics'
else:
return 'ModelMetrics'
@property
def model_type(self):
"""
**[Required]** Gets the model_type of this ModelMetrics.
The type of custom model trained.
Allowed values for this property are: "KEY_VALUE_EXTRACTION", "DOCUMENT_CLASSIFICATION", 'UNKNOWN_ENUM_VALUE'.
Any unrecognized values returned by a service will be mapped to 'UNKNOWN_ENUM_VALUE'.
:return: The model_type of this ModelMetrics.
:rtype: str
"""
return self._model_type
@model_type.setter
def model_type(self, model_type):
"""
Sets the model_type of this ModelMetrics.
The type of custom model trained.
:param model_type: The model_type of this ModelMetrics.
:type: str
"""
allowed_values = ["KEY_VALUE_EXTRACTION", "DOCUMENT_CLASSIFICATION"]
if not value_allowed_none_or_none_sentinel(model_type, allowed_values):
model_type = 'UNKNOWN_ENUM_VALUE'
self._model_type = model_type
@property
def dataset_summary(self):
"""
Gets the dataset_summary of this ModelMetrics.
:return: The dataset_summary of this ModelMetrics.
:rtype: oci.ai_document.models.DatasetSummary
"""
return self._dataset_summary
@dataset_summary.setter
def dataset_summary(self, dataset_summary):
"""
Sets the dataset_summary of this ModelMetrics.
:param dataset_summary: The dataset_summary of this ModelMetrics.
:type: oci.ai_document.models.DatasetSummary
"""
self._dataset_summary = dataset_summary
def __repr__(self):
return formatted_flat_dict(self)
def __eq__(self, other):
if other is None:
return False
return self.__dict__ == other.__dict__
def __ne__(self, other):
return not self == other