File: //lib/mysqlsh/lib/python3.8/site-packages/oci/oci_control_center/models/summarized_metric_data.py
# coding: utf-8
# Copyright (c) 2016, 2025, Oracle and/or its affiliates. All rights reserved.
# This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license.
# NOTE: This class is auto generated by OracleSDKGenerator. DO NOT EDIT. API Version: 20230515
from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401
from oci.decorators import init_model_state_from_kwargs
@init_model_state_from_kwargs
class SummarizedMetricData(object):
"""
The recorded metric value at a specific timestamp.
"""
def __init__(self, **kwargs):
"""
Initializes a new SummarizedMetricData object with values from keyword arguments.
The following keyword arguments are supported (corresponding to the getters/setters of this class):
:param sample_time:
The value to assign to the sample_time property of this SummarizedMetricData.
:type sample_time: datetime
:param resolution:
The value to assign to the resolution property of this SummarizedMetricData.
:type resolution: str
:param dimensions:
The value to assign to the dimensions property of this SummarizedMetricData.
:type dimensions: dict(str, DimensionValue)
:param aggregation_method:
The value to assign to the aggregation_method property of this SummarizedMetricData.
:type aggregation_method: str
:param aggregated_value:
The value to assign to the aggregated_value property of this SummarizedMetricData.
:type aggregated_value: float
"""
self.swagger_types = {
'sample_time': 'datetime',
'resolution': 'str',
'dimensions': 'dict(str, DimensionValue)',
'aggregation_method': 'str',
'aggregated_value': 'float'
}
self.attribute_map = {
'sample_time': 'sampleTime',
'resolution': 'resolution',
'dimensions': 'dimensions',
'aggregation_method': 'aggregationMethod',
'aggregated_value': 'aggregatedValue'
}
self._sample_time = None
self._resolution = None
self._dimensions = None
self._aggregation_method = None
self._aggregated_value = None
@property
def sample_time(self):
"""
Gets the sample_time of this SummarizedMetricData.
The time at which the metric data was recorded.
:return: The sample_time of this SummarizedMetricData.
:rtype: datetime
"""
return self._sample_time
@sample_time.setter
def sample_time(self, sample_time):
"""
Sets the sample_time of this SummarizedMetricData.
The time at which the metric data was recorded.
:param sample_time: The sample_time of this SummarizedMetricData.
:type: datetime
"""
self._sample_time = sample_time
@property
def resolution(self):
"""
Gets the resolution of this SummarizedMetricData.
The duration over which the metric data is aggregated. Supported values: `1m`-`60m`, `1h`-`24h`, `1d`.
:return: The resolution of this SummarizedMetricData.
:rtype: str
"""
return self._resolution
@resolution.setter
def resolution(self, resolution):
"""
Sets the resolution of this SummarizedMetricData.
The duration over which the metric data is aggregated. Supported values: `1m`-`60m`, `1h`-`24h`, `1d`.
:param resolution: The resolution of this SummarizedMetricData.
:type: str
"""
self._resolution = resolution
@property
def dimensions(self):
"""
Gets the dimensions of this SummarizedMetricData.
Qualifiers provided in the definition of the returned metric. Available dimensions vary by metric namespace.
:return: The dimensions of this SummarizedMetricData.
:rtype: dict(str, DimensionValue)
"""
return self._dimensions
@dimensions.setter
def dimensions(self, dimensions):
"""
Sets the dimensions of this SummarizedMetricData.
Qualifiers provided in the definition of the returned metric. Available dimensions vary by metric namespace.
:param dimensions: The dimensions of this SummarizedMetricData.
:type: dict(str, DimensionValue)
"""
self._dimensions = dimensions
@property
def aggregation_method(self):
"""
Gets the aggregation_method of this SummarizedMetricData.
The aggregation method used for aggregating the metric values. The aggregation method depends on the metric itself.
:return: The aggregation_method of this SummarizedMetricData.
:rtype: str
"""
return self._aggregation_method
@aggregation_method.setter
def aggregation_method(self, aggregation_method):
"""
Sets the aggregation_method of this SummarizedMetricData.
The aggregation method used for aggregating the metric values. The aggregation method depends on the metric itself.
:param aggregation_method: The aggregation_method of this SummarizedMetricData.
:type: str
"""
self._aggregation_method = aggregation_method
@property
def aggregated_value(self):
"""
Gets the aggregated_value of this SummarizedMetricData.
The aggregated metric value for the specified request.
:return: The aggregated_value of this SummarizedMetricData.
:rtype: float
"""
return self._aggregated_value
@aggregated_value.setter
def aggregated_value(self, aggregated_value):
"""
Sets the aggregated_value of this SummarizedMetricData.
The aggregated metric value for the specified request.
:param aggregated_value: The aggregated_value of this SummarizedMetricData.
:type: float
"""
self._aggregated_value = aggregated_value
def __repr__(self):
return formatted_flat_dict(self)
def __eq__(self, other):
if other is None:
return False
return self.__dict__ == other.__dict__
def __ne__(self, other):
return not self == other