File: //lib/mysqlsh/lib/python3.8/site-packages/oci/generative_ai/models/model_metrics.py
# coding: utf-8
# Copyright (c) 2016, 2025, Oracle and/or its affiliates. All rights reserved.
# This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license.
# NOTE: This class is auto generated by OracleSDKGenerator. DO NOT EDIT. API Version: 20231130
from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401
from oci.decorators import init_model_state_from_kwargs
@init_model_state_from_kwargs
class ModelMetrics(object):
"""
Model metrics during the creation of a new model.
"""
#: A constant which can be used with the model_metrics_type property of a ModelMetrics.
#: This constant has a value of "TEXT_GENERATION_MODEL_METRICS"
MODEL_METRICS_TYPE_TEXT_GENERATION_MODEL_METRICS = "TEXT_GENERATION_MODEL_METRICS"
#: A constant which can be used with the model_metrics_type property of a ModelMetrics.
#: This constant has a value of "CHAT_MODEL_METRICS"
MODEL_METRICS_TYPE_CHAT_MODEL_METRICS = "CHAT_MODEL_METRICS"
def __init__(self, **kwargs):
"""
Initializes a new ModelMetrics object with values from keyword arguments. This class has the following subclasses and if you are using this class as input
to a service operations then you should favor using a subclass over the base class:
* :class:`~oci.generative_ai.models.TextGenerationModelMetrics`
* :class:`~oci.generative_ai.models.ChatModelMetrics`
The following keyword arguments are supported (corresponding to the getters/setters of this class):
:param model_metrics_type:
The value to assign to the model_metrics_type property of this ModelMetrics.
Allowed values for this property are: "TEXT_GENERATION_MODEL_METRICS", "CHAT_MODEL_METRICS", 'UNKNOWN_ENUM_VALUE'.
Any unrecognized values returned by a service will be mapped to 'UNKNOWN_ENUM_VALUE'.
:type model_metrics_type: str
"""
self.swagger_types = {
'model_metrics_type': 'str'
}
self.attribute_map = {
'model_metrics_type': 'modelMetricsType'
}
self._model_metrics_type = None
@staticmethod
def get_subtype(object_dictionary):
"""
Given the hash representation of a subtype of this class,
use the info in the hash to return the class of the subtype.
"""
type = object_dictionary['modelMetricsType']
if type == 'TEXT_GENERATION_MODEL_METRICS':
return 'TextGenerationModelMetrics'
if type == 'CHAT_MODEL_METRICS':
return 'ChatModelMetrics'
else:
return 'ModelMetrics'
@property
def model_metrics_type(self):
"""
**[Required]** Gets the model_metrics_type of this ModelMetrics.
The type of the model metrics. Each type of model can expect a different set of model metrics.
Allowed values for this property are: "TEXT_GENERATION_MODEL_METRICS", "CHAT_MODEL_METRICS", 'UNKNOWN_ENUM_VALUE'.
Any unrecognized values returned by a service will be mapped to 'UNKNOWN_ENUM_VALUE'.
:return: The model_metrics_type of this ModelMetrics.
:rtype: str
"""
return self._model_metrics_type
@model_metrics_type.setter
def model_metrics_type(self, model_metrics_type):
"""
Sets the model_metrics_type of this ModelMetrics.
The type of the model metrics. Each type of model can expect a different set of model metrics.
:param model_metrics_type: The model_metrics_type of this ModelMetrics.
:type: str
"""
allowed_values = ["TEXT_GENERATION_MODEL_METRICS", "CHAT_MODEL_METRICS"]
if not value_allowed_none_or_none_sentinel(model_metrics_type, allowed_values):
model_metrics_type = 'UNKNOWN_ENUM_VALUE'
self._model_metrics_type = model_metrics_type
def __repr__(self):
return formatted_flat_dict(self)
def __eq__(self, other):
if other is None:
return False
return self.__dict__ == other.__dict__
def __ne__(self, other):
return not self == other