File: //lib/mysqlsh/lib/python3.8/site-packages/oci/cloud_guard/models/responder_execution_aggregation.py
# coding: utf-8
# Copyright (c) 2016, 2025, Oracle and/or its affiliates. All rights reserved.
# This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license.
# NOTE: This class is auto generated by OracleSDKGenerator. DO NOT EDIT. API Version: 20200131
from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401
from oci.decorators import init_model_state_from_kwargs
@init_model_state_from_kwargs
class ResponderExecutionAggregation(object):
"""
Provides the dimensions and their corresponding count value.
"""
def __init__(self, **kwargs):
"""
Initializes a new ResponderExecutionAggregation object with values from keyword arguments.
The following keyword arguments are supported (corresponding to the getters/setters of this class):
:param dimensions_map:
The value to assign to the dimensions_map property of this ResponderExecutionAggregation.
:type dimensions_map: dict(str, str)
:param count:
The value to assign to the count property of this ResponderExecutionAggregation.
:type count: int
"""
self.swagger_types = {
'dimensions_map': 'dict(str, str)',
'count': 'int'
}
self.attribute_map = {
'dimensions_map': 'dimensionsMap',
'count': 'count'
}
self._dimensions_map = None
self._count = None
@property
def dimensions_map(self):
"""
**[Required]** Gets the dimensions_map of this ResponderExecutionAggregation.
The key-value pairs of dimensions and their names. The key corresponds to the Analytic Dimension(s) chosen, and the value corresponds to the value of the dimension from the data. E.g. if the Analytic Dimension chosen is \"RISK_LEVEL\", then the value will be like \"CRITICAL\". If the Analytic Dimensions chosen are \"RISK_LEVEL\" and \"RESOURCE_TYPE\", then the map will have two key-value pairs of form {\"RISK_LEVEL\" : \"CRITICAL, \"RESOURCE_TYPE\" : \"LOAD_BALANCER\"}
:return: The dimensions_map of this ResponderExecutionAggregation.
:rtype: dict(str, str)
"""
return self._dimensions_map
@dimensions_map.setter
def dimensions_map(self, dimensions_map):
"""
Sets the dimensions_map of this ResponderExecutionAggregation.
The key-value pairs of dimensions and their names. The key corresponds to the Analytic Dimension(s) chosen, and the value corresponds to the value of the dimension from the data. E.g. if the Analytic Dimension chosen is \"RISK_LEVEL\", then the value will be like \"CRITICAL\". If the Analytic Dimensions chosen are \"RISK_LEVEL\" and \"RESOURCE_TYPE\", then the map will have two key-value pairs of form {\"RISK_LEVEL\" : \"CRITICAL, \"RESOURCE_TYPE\" : \"LOAD_BALANCER\"}
:param dimensions_map: The dimensions_map of this ResponderExecutionAggregation.
:type: dict(str, str)
"""
self._dimensions_map = dimensions_map
@property
def count(self):
"""
**[Required]** Gets the count of this ResponderExecutionAggregation.
The number of occurrences with given dimensions
:return: The count of this ResponderExecutionAggregation.
:rtype: int
"""
return self._count
@count.setter
def count(self, count):
"""
Sets the count of this ResponderExecutionAggregation.
The number of occurrences with given dimensions
:param count: The count of this ResponderExecutionAggregation.
:type: int
"""
self._count = count
def __repr__(self):
return formatted_flat_dict(self)
def __eq__(self, other):
if other is None:
return False
return self.__dict__ == other.__dict__
def __ne__(self, other):
return not self == other