File: //lib/mysqlsh/lib/python3.8/site-packages/oci/ai_anomaly_detection/models/model_training_results.py
# coding: utf-8
# Copyright (c) 2016, 2025, Oracle and/or its affiliates. All rights reserved.
# This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license.
# NOTE: This class is auto generated by OracleSDKGenerator. DO NOT EDIT. API Version: 20210101
from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401
from oci.decorators import init_model_state_from_kwargs
@init_model_state_from_kwargs
class ModelTrainingResults(object):
"""
Specifies the details for an Anomaly Detection model trained with MSET.
"""
#: A constant which can be used with the algorithm property of a ModelTrainingResults.
#: This constant has a value of "MULTIVARIATE_MSET"
ALGORITHM_MULTIVARIATE_MSET = "MULTIVARIATE_MSET"
#: A constant which can be used with the algorithm property of a ModelTrainingResults.
#: This constant has a value of "UNIVARIATE_OCSVM"
ALGORITHM_UNIVARIATE_OCSVM = "UNIVARIATE_OCSVM"
def __init__(self, **kwargs):
"""
Initializes a new ModelTrainingResults object with values from keyword arguments.
The following keyword arguments are supported (corresponding to the getters/setters of this class):
:param fap:
The value to assign to the fap property of this ModelTrainingResults.
:type fap: float
:param multivariate_fap:
The value to assign to the multivariate_fap property of this ModelTrainingResults.
:type multivariate_fap: float
:param algorithm:
The value to assign to the algorithm property of this ModelTrainingResults.
Allowed values for this property are: "MULTIVARIATE_MSET", "UNIVARIATE_OCSVM", 'UNKNOWN_ENUM_VALUE'.
Any unrecognized values returned by a service will be mapped to 'UNKNOWN_ENUM_VALUE'.
:type algorithm: str
:param window_size:
The value to assign to the window_size property of this ModelTrainingResults.
:type window_size: int
:param is_training_goal_achieved:
The value to assign to the is_training_goal_achieved property of this ModelTrainingResults.
:type is_training_goal_achieved: bool
:param warning:
The value to assign to the warning property of this ModelTrainingResults.
:type warning: str
:param signal_details:
The value to assign to the signal_details property of this ModelTrainingResults.
:type signal_details: list[oci.ai_anomaly_detection.models.PerSignalDetails]
:param row_reduction_details:
The value to assign to the row_reduction_details property of this ModelTrainingResults.
:type row_reduction_details: oci.ai_anomaly_detection.models.RowReductionDetails
"""
self.swagger_types = {
'fap': 'float',
'multivariate_fap': 'float',
'algorithm': 'str',
'window_size': 'int',
'is_training_goal_achieved': 'bool',
'warning': 'str',
'signal_details': 'list[PerSignalDetails]',
'row_reduction_details': 'RowReductionDetails'
}
self.attribute_map = {
'fap': 'fap',
'multivariate_fap': 'multivariateFap',
'algorithm': 'algorithm',
'window_size': 'windowSize',
'is_training_goal_achieved': 'isTrainingGoalAchieved',
'warning': 'warning',
'signal_details': 'signalDetails',
'row_reduction_details': 'rowReductionDetails'
}
self._fap = None
self._multivariate_fap = None
self._algorithm = None
self._window_size = None
self._is_training_goal_achieved = None
self._warning = None
self._signal_details = None
self._row_reduction_details = None
@property
def fap(self):
"""
**[Required]** Gets the fap of this ModelTrainingResults.
The final-achieved model accuracy metric on individual value level
:return: The fap of this ModelTrainingResults.
:rtype: float
"""
return self._fap
@fap.setter
def fap(self, fap):
"""
Sets the fap of this ModelTrainingResults.
The final-achieved model accuracy metric on individual value level
:param fap: The fap of this ModelTrainingResults.
:type: float
"""
self._fap = fap
@property
def multivariate_fap(self):
"""
Gets the multivariate_fap of this ModelTrainingResults.
The model accuracy metric on timestamp level.
:return: The multivariate_fap of this ModelTrainingResults.
:rtype: float
"""
return self._multivariate_fap
@multivariate_fap.setter
def multivariate_fap(self, multivariate_fap):
"""
Sets the multivariate_fap of this ModelTrainingResults.
The model accuracy metric on timestamp level.
:param multivariate_fap: The multivariate_fap of this ModelTrainingResults.
:type: float
"""
self._multivariate_fap = multivariate_fap
@property
def algorithm(self):
"""
Gets the algorithm of this ModelTrainingResults.
Actual algorithm used to train the model
Allowed values for this property are: "MULTIVARIATE_MSET", "UNIVARIATE_OCSVM", 'UNKNOWN_ENUM_VALUE'.
Any unrecognized values returned by a service will be mapped to 'UNKNOWN_ENUM_VALUE'.
:return: The algorithm of this ModelTrainingResults.
:rtype: str
"""
return self._algorithm
@algorithm.setter
def algorithm(self, algorithm):
"""
Sets the algorithm of this ModelTrainingResults.
Actual algorithm used to train the model
:param algorithm: The algorithm of this ModelTrainingResults.
:type: str
"""
allowed_values = ["MULTIVARIATE_MSET", "UNIVARIATE_OCSVM"]
if not value_allowed_none_or_none_sentinel(algorithm, allowed_values):
algorithm = 'UNKNOWN_ENUM_VALUE'
self._algorithm = algorithm
@property
def window_size(self):
"""
Gets the window_size of this ModelTrainingResults.
Window size defined during training or deduced by the algorithm.
:return: The window_size of this ModelTrainingResults.
:rtype: int
"""
return self._window_size
@window_size.setter
def window_size(self, window_size):
"""
Sets the window_size of this ModelTrainingResults.
Window size defined during training or deduced by the algorithm.
:param window_size: The window_size of this ModelTrainingResults.
:type: int
"""
self._window_size = window_size
@property
def is_training_goal_achieved(self):
"""
Gets the is_training_goal_achieved of this ModelTrainingResults.
A boolean value to indicate if train goal/targetFap is achieved for trained model
:return: The is_training_goal_achieved of this ModelTrainingResults.
:rtype: bool
"""
return self._is_training_goal_achieved
@is_training_goal_achieved.setter
def is_training_goal_achieved(self, is_training_goal_achieved):
"""
Sets the is_training_goal_achieved of this ModelTrainingResults.
A boolean value to indicate if train goal/targetFap is achieved for trained model
:param is_training_goal_achieved: The is_training_goal_achieved of this ModelTrainingResults.
:type: bool
"""
self._is_training_goal_achieved = is_training_goal_achieved
@property
def warning(self):
"""
Gets the warning of this ModelTrainingResults.
A warning message to explain the reason when targetFap cannot be achieved for trained model
:return: The warning of this ModelTrainingResults.
:rtype: str
"""
return self._warning
@warning.setter
def warning(self, warning):
"""
Sets the warning of this ModelTrainingResults.
A warning message to explain the reason when targetFap cannot be achieved for trained model
:param warning: The warning of this ModelTrainingResults.
:type: str
"""
self._warning = warning
@property
def signal_details(self):
"""
Gets the signal_details of this ModelTrainingResults.
The list of signal details.
:return: The signal_details of this ModelTrainingResults.
:rtype: list[oci.ai_anomaly_detection.models.PerSignalDetails]
"""
return self._signal_details
@signal_details.setter
def signal_details(self, signal_details):
"""
Sets the signal_details of this ModelTrainingResults.
The list of signal details.
:param signal_details: The signal_details of this ModelTrainingResults.
:type: list[oci.ai_anomaly_detection.models.PerSignalDetails]
"""
self._signal_details = signal_details
@property
def row_reduction_details(self):
"""
Gets the row_reduction_details of this ModelTrainingResults.
:return: The row_reduction_details of this ModelTrainingResults.
:rtype: oci.ai_anomaly_detection.models.RowReductionDetails
"""
return self._row_reduction_details
@row_reduction_details.setter
def row_reduction_details(self, row_reduction_details):
"""
Sets the row_reduction_details of this ModelTrainingResults.
:param row_reduction_details: The row_reduction_details of this ModelTrainingResults.
:type: oci.ai_anomaly_detection.models.RowReductionDetails
"""
self._row_reduction_details = row_reduction_details
def __repr__(self):
return formatted_flat_dict(self)
def __eq__(self, other):
if other is None:
return False
return self.__dict__ == other.__dict__
def __ne__(self, other):
return not self == other