File: //proc/self/root/lib/mysqlsh/lib/python3.8/site-packages/oci/ai_document/models/dataset_summary.py
# coding: utf-8
# Copyright (c) 2016, 2025, Oracle and/or its affiliates. All rights reserved.
# This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license.
# NOTE: This class is auto generated by OracleSDKGenerator. DO NOT EDIT. API Version: 20221109
from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401
from oci.decorators import init_model_state_from_kwargs
@init_model_state_from_kwargs
class DatasetSummary(object):
"""
Summary of count of samples used during model training.
"""
def __init__(self, **kwargs):
"""
Initializes a new DatasetSummary object with values from keyword arguments.
The following keyword arguments are supported (corresponding to the getters/setters of this class):
:param training_sample_count:
The value to assign to the training_sample_count property of this DatasetSummary.
:type training_sample_count: int
:param validation_sample_count:
The value to assign to the validation_sample_count property of this DatasetSummary.
:type validation_sample_count: int
:param test_sample_count:
The value to assign to the test_sample_count property of this DatasetSummary.
:type test_sample_count: int
"""
self.swagger_types = {
'training_sample_count': 'int',
'validation_sample_count': 'int',
'test_sample_count': 'int'
}
self.attribute_map = {
'training_sample_count': 'trainingSampleCount',
'validation_sample_count': 'validationSampleCount',
'test_sample_count': 'testSampleCount'
}
self._training_sample_count = None
self._validation_sample_count = None
self._test_sample_count = None
@property
def training_sample_count(self):
"""
Gets the training_sample_count of this DatasetSummary.
Number of samples used for training the model.
:return: The training_sample_count of this DatasetSummary.
:rtype: int
"""
return self._training_sample_count
@training_sample_count.setter
def training_sample_count(self, training_sample_count):
"""
Sets the training_sample_count of this DatasetSummary.
Number of samples used for training the model.
:param training_sample_count: The training_sample_count of this DatasetSummary.
:type: int
"""
self._training_sample_count = training_sample_count
@property
def validation_sample_count(self):
"""
Gets the validation_sample_count of this DatasetSummary.
Number of samples used for validating the model.
:return: The validation_sample_count of this DatasetSummary.
:rtype: int
"""
return self._validation_sample_count
@validation_sample_count.setter
def validation_sample_count(self, validation_sample_count):
"""
Sets the validation_sample_count of this DatasetSummary.
Number of samples used for validating the model.
:param validation_sample_count: The validation_sample_count of this DatasetSummary.
:type: int
"""
self._validation_sample_count = validation_sample_count
@property
def test_sample_count(self):
"""
Gets the test_sample_count of this DatasetSummary.
Number of samples used for testing the model.
:return: The test_sample_count of this DatasetSummary.
:rtype: int
"""
return self._test_sample_count
@test_sample_count.setter
def test_sample_count(self, test_sample_count):
"""
Sets the test_sample_count of this DatasetSummary.
Number of samples used for testing the model.
:param test_sample_count: The test_sample_count of this DatasetSummary.
:type: int
"""
self._test_sample_count = test_sample_count
def __repr__(self):
return formatted_flat_dict(self)
def __eq__(self, other):
if other is None:
return False
return self.__dict__ == other.__dict__
def __ne__(self, other):
return not self == other