File: //lib/mysqlsh/lib/python3.8/site-packages/oci/ai_language/models/model_details.py
# coding: utf-8
# Copyright (c) 2016, 2025, Oracle and/or its affiliates. All rights reserved.
# This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license.
# NOTE: This class is auto generated by OracleSDKGenerator. DO NOT EDIT. API Version: 20221001
from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401
from oci.decorators import init_model_state_from_kwargs
@init_model_state_from_kwargs
class ModelDetails(object):
"""
Possible model types
"""
#: A constant which can be used with the model_type property of a ModelDetails.
#: This constant has a value of "NAMED_ENTITY_RECOGNITION"
MODEL_TYPE_NAMED_ENTITY_RECOGNITION = "NAMED_ENTITY_RECOGNITION"
#: A constant which can be used with the model_type property of a ModelDetails.
#: This constant has a value of "TEXT_CLASSIFICATION"
MODEL_TYPE_TEXT_CLASSIFICATION = "TEXT_CLASSIFICATION"
#: A constant which can be used with the model_type property of a ModelDetails.
#: This constant has a value of "PRE_TRAINED_NAMED_ENTITY_RECOGNITION"
MODEL_TYPE_PRE_TRAINED_NAMED_ENTITY_RECOGNITION = "PRE_TRAINED_NAMED_ENTITY_RECOGNITION"
#: A constant which can be used with the model_type property of a ModelDetails.
#: This constant has a value of "PRE_TRAINED_TEXT_CLASSIFICATION"
MODEL_TYPE_PRE_TRAINED_TEXT_CLASSIFICATION = "PRE_TRAINED_TEXT_CLASSIFICATION"
#: A constant which can be used with the model_type property of a ModelDetails.
#: This constant has a value of "PRE_TRAINED_SENTIMENT_ANALYSIS"
MODEL_TYPE_PRE_TRAINED_SENTIMENT_ANALYSIS = "PRE_TRAINED_SENTIMENT_ANALYSIS"
#: A constant which can be used with the model_type property of a ModelDetails.
#: This constant has a value of "PRE_TRAINED_KEYPHRASE_EXTRACTION"
MODEL_TYPE_PRE_TRAINED_KEYPHRASE_EXTRACTION = "PRE_TRAINED_KEYPHRASE_EXTRACTION"
#: A constant which can be used with the model_type property of a ModelDetails.
#: This constant has a value of "PRE_TRAINED_LANGUAGE_DETECTION"
MODEL_TYPE_PRE_TRAINED_LANGUAGE_DETECTION = "PRE_TRAINED_LANGUAGE_DETECTION"
#: A constant which can be used with the model_type property of a ModelDetails.
#: This constant has a value of "PRE_TRAINED_PII"
MODEL_TYPE_PRE_TRAINED_PII = "PRE_TRAINED_PII"
#: A constant which can be used with the model_type property of a ModelDetails.
#: This constant has a value of "PRE_TRAINED_HEALTH_NLU"
MODEL_TYPE_PRE_TRAINED_HEALTH_NLU = "PRE_TRAINED_HEALTH_NLU"
#: A constant which can be used with the model_type property of a ModelDetails.
#: This constant has a value of "PRE_TRAINED_SUMMARIZATION"
MODEL_TYPE_PRE_TRAINED_SUMMARIZATION = "PRE_TRAINED_SUMMARIZATION"
#: A constant which can be used with the model_type property of a ModelDetails.
#: This constant has a value of "PRE_TRAINED_UNIVERSAL"
MODEL_TYPE_PRE_TRAINED_UNIVERSAL = "PRE_TRAINED_UNIVERSAL"
#: A constant which can be used with the model_type property of a ModelDetails.
#: This constant has a value of "PII"
MODEL_TYPE_PII = "PII"
#: A constant which can be used with the model_type property of a ModelDetails.
#: This constant has a value of "PRE_TRAINED_TRANSLATION"
MODEL_TYPE_PRE_TRAINED_TRANSLATION = "PRE_TRAINED_TRANSLATION"
#: A constant which can be used with the model_type property of a ModelDetails.
#: This constant has a value of "HEALTH_NLU"
MODEL_TYPE_HEALTH_NLU = "HEALTH_NLU"
def __init__(self, **kwargs):
"""
Initializes a new ModelDetails object with values from keyword arguments. This class has the following subclasses and if you are using this class as input
to a service operations then you should favor using a subclass over the base class:
* :class:`~oci.ai_language.models.PreTrainedKeyPhraseExtractionModelDetails`
* :class:`~oci.ai_language.models.PreTrainedTranslationModelDetails`
* :class:`~oci.ai_language.models.PreTrainedHealthNluModelDetails`
* :class:`~oci.ai_language.models.PreTrainedUniversalModel`
* :class:`~oci.ai_language.models.PreTrainedLanguageDetectionModelDetails`
* :class:`~oci.ai_language.models.PreTrainedSentimentAnalysisModelDetails`
* :class:`~oci.ai_language.models.TextClassificationModelDetails`
* :class:`~oci.ai_language.models.HealthNluModelDetails`
* :class:`~oci.ai_language.models.PreTrainedSummarization`
* :class:`~oci.ai_language.models.NamedEntityRecognitionModelDetails`
* :class:`~oci.ai_language.models.PiiModelDetails`
* :class:`~oci.ai_language.models.PreTrainedNamedEntityRecognitionModelDetails`
* :class:`~oci.ai_language.models.PreTrainedTextClassificationModelDetails`
* :class:`~oci.ai_language.models.PreTrainedPiiModelDetails`
The following keyword arguments are supported (corresponding to the getters/setters of this class):
:param language_code:
The value to assign to the language_code property of this ModelDetails.
:type language_code: str
:param model_type:
The value to assign to the model_type property of this ModelDetails.
Allowed values for this property are: "NAMED_ENTITY_RECOGNITION", "TEXT_CLASSIFICATION", "PRE_TRAINED_NAMED_ENTITY_RECOGNITION", "PRE_TRAINED_TEXT_CLASSIFICATION", "PRE_TRAINED_SENTIMENT_ANALYSIS", "PRE_TRAINED_KEYPHRASE_EXTRACTION", "PRE_TRAINED_LANGUAGE_DETECTION", "PRE_TRAINED_PII", "PRE_TRAINED_HEALTH_NLU", "PRE_TRAINED_SUMMARIZATION", "PRE_TRAINED_UNIVERSAL", "PII", "PRE_TRAINED_TRANSLATION", "HEALTH_NLU", 'UNKNOWN_ENUM_VALUE'.
Any unrecognized values returned by a service will be mapped to 'UNKNOWN_ENUM_VALUE'.
:type model_type: str
"""
self.swagger_types = {
'language_code': 'str',
'model_type': 'str'
}
self.attribute_map = {
'language_code': 'languageCode',
'model_type': 'modelType'
}
self._language_code = None
self._model_type = None
@staticmethod
def get_subtype(object_dictionary):
"""
Given the hash representation of a subtype of this class,
use the info in the hash to return the class of the subtype.
"""
type = object_dictionary['modelType']
if type == 'PRE_TRAINED_KEYPHRASE_EXTRACTION':
return 'PreTrainedKeyPhraseExtractionModelDetails'
if type == 'PRE_TRAINED_TRANSLATION':
return 'PreTrainedTranslationModelDetails'
if type == 'PRE_TRAINED_HEALTH_NLU':
return 'PreTrainedHealthNluModelDetails'
if type == 'PRE_TRAINED_UNIVERSAL':
return 'PreTrainedUniversalModel'
if type == 'PRE_TRAINED_LANGUAGE_DETECTION':
return 'PreTrainedLanguageDetectionModelDetails'
if type == 'PRE_TRAINED_SENTIMENT_ANALYSIS':
return 'PreTrainedSentimentAnalysisModelDetails'
if type == 'TEXT_CLASSIFICATION':
return 'TextClassificationModelDetails'
if type == 'HEALTH_NLU':
return 'HealthNluModelDetails'
if type == 'PRE_TRAINED_SUMMARIZATION':
return 'PreTrainedSummarization'
if type == 'NAMED_ENTITY_RECOGNITION':
return 'NamedEntityRecognitionModelDetails'
if type == 'PII':
return 'PiiModelDetails'
if type == 'PRE_TRAINED_NAMED_ENTITY_RECOGNITION':
return 'PreTrainedNamedEntityRecognitionModelDetails'
if type == 'PRE_TRAINED_TEXT_CLASSIFICATION':
return 'PreTrainedTextClassificationModelDetails'
if type == 'PRE_TRAINED_PII':
return 'PreTrainedPiiModelDetails'
else:
return 'ModelDetails'
@property
def language_code(self):
"""
Gets the language_code of this ModelDetails.
supported language default value is en
:return: The language_code of this ModelDetails.
:rtype: str
"""
return self._language_code
@language_code.setter
def language_code(self, language_code):
"""
Sets the language_code of this ModelDetails.
supported language default value is en
:param language_code: The language_code of this ModelDetails.
:type: str
"""
self._language_code = language_code
@property
def model_type(self):
"""
**[Required]** Gets the model_type of this ModelDetails.
Model type
Allowed values for this property are: "NAMED_ENTITY_RECOGNITION", "TEXT_CLASSIFICATION", "PRE_TRAINED_NAMED_ENTITY_RECOGNITION", "PRE_TRAINED_TEXT_CLASSIFICATION", "PRE_TRAINED_SENTIMENT_ANALYSIS", "PRE_TRAINED_KEYPHRASE_EXTRACTION", "PRE_TRAINED_LANGUAGE_DETECTION", "PRE_TRAINED_PII", "PRE_TRAINED_HEALTH_NLU", "PRE_TRAINED_SUMMARIZATION", "PRE_TRAINED_UNIVERSAL", "PII", "PRE_TRAINED_TRANSLATION", "HEALTH_NLU", 'UNKNOWN_ENUM_VALUE'.
Any unrecognized values returned by a service will be mapped to 'UNKNOWN_ENUM_VALUE'.
:return: The model_type of this ModelDetails.
:rtype: str
"""
return self._model_type
@model_type.setter
def model_type(self, model_type):
"""
Sets the model_type of this ModelDetails.
Model type
:param model_type: The model_type of this ModelDetails.
:type: str
"""
allowed_values = ["NAMED_ENTITY_RECOGNITION", "TEXT_CLASSIFICATION", "PRE_TRAINED_NAMED_ENTITY_RECOGNITION", "PRE_TRAINED_TEXT_CLASSIFICATION", "PRE_TRAINED_SENTIMENT_ANALYSIS", "PRE_TRAINED_KEYPHRASE_EXTRACTION", "PRE_TRAINED_LANGUAGE_DETECTION", "PRE_TRAINED_PII", "PRE_TRAINED_HEALTH_NLU", "PRE_TRAINED_SUMMARIZATION", "PRE_TRAINED_UNIVERSAL", "PII", "PRE_TRAINED_TRANSLATION", "HEALTH_NLU"]
if not value_allowed_none_or_none_sentinel(model_type, allowed_values):
model_type = 'UNKNOWN_ENUM_VALUE'
self._model_type = model_type
def __repr__(self):
return formatted_flat_dict(self)
def __eq__(self, other):
if other is None:
return False
return self.__dict__ == other.__dict__
def __ne__(self, other):
return not self == other